History of Science, Part II

from An Introduction to the History of Science, by Walter Libby, available free at Gutenberg:

Dr. Wilkins, the brother-in-law of Cromwell, who is regarded by some as the founder of the Royal Society, removed to Oxford, as Warden of Wadham, in 1649. Here he held meetings and conducted experiments in conjunction with Wallis, Goddard, Petty, Boyle, and others, including Ward (afterwards Bishop of Salisbury) interested in Bulliau’s Astronomy; and the celebrated physician and anatomist, Thomas Willis, author of a work on the brain (Cerebri Anatome), and another on fevers (De Febribus), in which he described epidemic typhoid as it occurred during the Civil War in 1643.

In the mean time the weekly meetings in London continued, and were attended when convenient by members of the Oxford group. At Gresham College by 1658 it was the custom to remain for discussion Wednesdays and Thursdays after Mr. Wren’s lecture and Mr. Rooke’s. During the unsettled state of the country after Cromwell’s death there was some interruption of the meetings, but with the accession of Charles II in 1660 there came a greater sense of security. New names appear on the records, Lord Brouncker, Sir Robert Moray, John Evelyn, Brereton, Ball, Robert Hooke, and Abraham Cowley.

Plans were discussed for a more permanent form of organization, especially on November 28, 1660, when something was said of a design to found a college for the promotion of physico-mathematical experimental learning. A few months later was published Cowley’s proposition for an endowed college with twenty professors, four of whom should be constantly traveling in the interests of science. The sixteen resident professors “should be bound to study[Pg 105] and teach all sorts of natural, experimental philosophy, to consist of the mathematics, mechanics, medicine, anatomy, chemistry, the history of animals, plants, minerals, elements, etc.; agriculture, architecture, art military, navigation, gardening; the mysteries of all trades and improvement of them; the facture of all merchandise, all natural magic or divination; and briefly all things contained in the Catalogue of Natural Histories annexed to my Lord Bacon’s Organon.” The early official history of the Royal Society (Sprat, 1667) says that this proposal hastened very much the adoption of a plan of organization. Cowley wished to educate youth and incur great expense (£4,000), but “most of the other particulars of his draught the Royal Society is now putting in practice.”

A charter of incorporation was granted in July, 1662; and, later, Charles II proclaimed himself founder and patron of the Royal Society for the advancement of natural science. Charles continued to take an interest in this organization, devoted to the discovery of truth by the corporate action of men; he proposed subjects for investigation, and asked their coöperation in a more accurate measurement of a degree of latitude. He showed himself tactful to take account of the democratic spirit of scientific investigation, and recommended to the Royal Society John Graunt, the author of a work on mortality statistics first published in 1661. Graunt was a shop-keeper of London, and Charles said that if they found any more such tradesmen, they should be sure to admit them all without more ado.

It was a recognized principle of the Society freely[Pg 106] to admit men of different religions, countries, professions. Sprat said that they openly professed, not to lay the foundation of an English, Scotch, Irish, Popish or Protestant philosophy, but a philosophy of mankind. They sought (hating war as most of them did) to establish a universal culture, or, as they phrased it, a constant intelligence throughout all civil nations. Even for the special purposes of the Society, hospitality toward all nations was necessary; for the ideal scientist, the perfect philosopher, should have the diligence and inquisitiveness of the northern nations, and the cold and circumspect and wary disposition of the Italians and Spaniards. Haak from the German Palatinate was one of the earliest Fellows of the Society, and is even credited by Wallis with being the first to suggest the meetings of 1645. Oldenburg from Bremen acted as secretary (along with Wilkins) and carried on an extensive foreign correspondence. Huygens of Holland was one of the original Fellows in 1663, while the names of Auzout, Sorbière, the Duke of Brunswick, Bulliau, Cassini, Malpighi, Leibnitz, Leeuwenhoek (as well as Winthrop and Roger Williams) appear in the records of the Society within the first decade. It seemed fitting that this cosmopolitan organization should be located in the world’s metropolis rather than in a mere university town. Sprat thought London the natural seat of a universal philosophy.

As already implied, the Royal Society was not exclusive in its attitude toward the different vocations. A spirit of true fellowship prevailed in Gresham College, as the Society was sometimes called. The medical profession, the universities, the churches, the[Pg 107] court, the army, the navy, trade, agriculture, and other industries were there represented. Social partition walls were broken down, and the Fellows, sobered by years of political and religious strife, joined, mutually assisting one another, in the advance of science for the sake of the common weal. Their express purpose was the improvement of all professions from the highest general to the lowest artisan. Particular attention was paid to the trades, the mechanic arts, and the fostering of inventions. One of their eight committees dealt with the histories of trades; another was concerned with mechanical inventions, and the king ordained in 1662 that no mechanical device should receive a patent before undergoing their scrutiny. A great many inventions emanated from the Fellows themselves—Hooke’s hygroscope; Boyle’s hydrometer, of use in the detection of counterfeit coin; and, again, the tablet anemometer used by Sir Christopher Wren (the Leonardo da Vinci of his age) to register the velocity of the wind. A third committee devoted itself to agriculture, and in the Society’s museum were collected products and curiosities of the shop, mine, sea, etc. One Fellow advised that attention should be paid even to the least and plainest of phenomena, as otherwise they might learn the romance of nature rather than its true history. So bent were they on preserving a spirit of simplicity and straightforwardness that in their sober discussions they sought to employ the language of artisans, countrymen, and merchants rather than that of wits and scholars.

Of course there was in the Society a predominance of gentlemen of means and leisure, “free and uncon[Pg 108]fined.” Their presence was thought to serve a double purpose. It checked the tendency to sacrifice the search of truth to immediate profit, and to lay such emphasis on application, as, in the words of a subsequent president of the Society, would make truth, and wisdom, and knowledge of no importance for their own sakes. In the second place their presence was held to check dogmatism on the part of the leaders, and subservience on the part of their followers. They understood how difficult it is to transmit knowledge without putting initiative in jeopardy and that quiet intellect is easily dismayed in the presence of bold speech. The Society accepted the authority of no one, and adopted as its motto Nullius in Verba.

In this attitude they were aided by their subject and method. Search for scientific truth by laboratory procedure does not favor dogmatism. The early meetings were taken up with experiments and discussions. The Fellows recognized that the mental powers are raised to a higher degree in company than in solitude. They welcomed diversity of view and the common-sense judgment of the onlooker. As in the Civil War the private citizen had held his own with the professional soldier, so here the contribution of the amateur to the discussion was not to be despised. They had been taught to shun all forms of narrowness and intolerance. They wished to avoid the pedantry of the mere scholar, and the allied states of mind to which all individuals are liable; they valued the concurring testimony of the well-informed assembly. In the investigation of truth by the experimental method they even arrived at the[Pg 109] view that “true experimenting has this one thing inseparable from it, never to be a fixed and settled art, and never to be limited by constant rules.” In its incipience at least it is evident that the Royal Society was filled with the spirit of tolerance and coöperation, and was singularly free from the spirit of envy and faction.”

Anybody care to narrate?

What struck you as you read?



This entry was posted in education, history, science and tagged . Bookmark the permalink. Trackbacks are closed, but you can post a comment.

Post a Comment

Your email is never published nor shared. Required fields are marked *

You may use these HTML tags and attributes <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>


This site uses Akismet to reduce spam. Learn how your comment data is processed.