The Beauties of Nature and the Wonders of the World We Live In, part VI of X

The Alps are to many of us an inexhaustible source of joy and peace, of health, and even of life. We have gone to them jaded and worn, feeling, perhaps without any external cause, anxious and out of spirits, and have returned full of health, strength, and energy. Among the mountains Nature herself seems freer and happier, brighter and purer, than elsewhere. The rush of the rivers, and the repose of the lakes, the pure snowfields and majestic glaciers, the fresh air, the mysterious summits of the mountains, the blue haze of the distance, the morning tints and the evening glow, the beauty of the sky and the grandeur of the storm, have all refreshed and delighted us time after time, and their memories can never fade away.

Even now as I write comes back to me the bright vision of an Alpine valley blue sky above, glittering snow, bare grey or rich red rock, dark pines here and there, mixed with bright green larches, then patches of smooth alp, with clumps of birch and beech, and dotted with brown chalets; then below them rock again, and wood, but this time with more deciduous trees; and then the valley itself, with emerald meadows, interspersed with alder copses, threaded together by a silver stream; and I almost fancy I can hear the tinkling of distant cowbells coming down from the alp, and the delicious murmur of the rushing water. The endless variety, the sense of repose and yet of power, the dignity of age, the energy of youth, the play of colour, the beauty of form, the mystery of their origin, all combine to invest mountains with a solemn beauty.

I feel with Ruskin that “mountains are the beginning and the end of all natural scenery; in them, and in the forms of inferior landscape that lead to them, my affections are wholly bound up; and though I can look with happy admiration at the lowland flowers, and woods, and open skies, the happiness is tranquil and cold, like that of examining detached flowers in a conservatory, or reading a pleasant book.” And of all mountain views which he has seen, the finest he considers is that from the Montanvert: “I have climbed much and wandered much in the heart of the high Alps, but I have never yet seen anything which equalled the view from the cabin of the Montanvert.”

It is no mere fancy that among mountains the flowers are peculiarly large and brilliant in colour. Not only are there many beautiful species which are peculiar to mountains, alpine Gentians, yellow, blue, and purple; alpine Rhododendrons, alpine Primroses and Cowslips, alpine Lychnis, Columbine, Monkshood, AnemonesNarcissusCampánulas, Soldanellas, and a thousand others less familiar to us, but it is well established that even within the limits of the same species those living up in the mountains have larger and brighter flowers than their sisters elsewhere.

Various alpine species belonging to quite distinct families form close moss-like cushions, gemmed with star-like flowers, or covered completely with a carpet of blossom. On the lower mountain slopes and in alpine valleys trees seem to flourish with peculiar luxuriance. Pines and Firs and Larches above; then, as we descend, Beeches and magnificent Chestnuts, which seem to rejoice in the sweet, fresh air and the pure mountain streams.

To any one accustomed to the rich bird life of English woods and hedgerows, it must be admitted that Swiss woods and Alps seem rather lonely and deserted. Still the Hawk, or even Eagle, soaring high up in the air, the weird cry of the Marmot, and the knowledge that, even if one cannot see Chamois, they may all the time be looking down on us, give the Alps, from this point of view also, a special interest of their own.

Another great charm of mountain districts is the richness of colour. “Consider, first, the difference produced in the whole tone of landscape colour by the introductions of purple, violet, and deep ultra-marine blue which we owe to mountains. In an ordinary lowland landscape we have the blue of the sky; the green of the grass, which I will suppose (and this is an unnecessary concession to the lowlands) entirely fresh and bright; the green of trees; and certain elements of purple, far more rich and beautiful than we generally should think, in their bark and shadows (bare hedges and thickets, or tops of trees, in subdued afternoon sunshine, are nearly perfect purple and of an exquisite tone), as well as in ploughed fields, and dark ground in general. But among mountains, in addition to all this, large unbroken spaces of pure violet and purple are introduced in their distances; and even near, by films of cloud passing over the darkness of ravines or forests, blues are produced of the most subtle tenderness; these azures and purples passing into rose colour of otherwise wholly unattainable delicacy among the upper summits, the blue of the sky being at the same time purer and deeper than in the plains. Nay, in some sense, a person who has never seen the rose colour of the rays of dawn crossing a blue mountain twelve or fifteen miles away can hardly be said to know what tenderness in colour means at all; bright tenderness he may, indeed, see in the sky or in a flower, but this grave tenderness of the far-away hill-purples he cannot conceive.”

“I do not know,” he says elsewhere, “any district possessing a more pure or uninterrupted fulness of mountain character (and that of the highest order), or which appears to have been less disturbed by foreign agencies, than that which borders the course of the Trient between Valorsine and Martigny. The paths which lead to it, out of the valley of the Rhone, rising at first in steep circles among the walnut trees, like winding stairs among the pillars of a Gothic tower, retire over the shoulders of the hills into a valley almost unknown, but thickly inhabited by an industrious and patient population. Along the ridges of the rocks, smoothed by old glaciers, into long, dark, billowy swellings, like the backs of plunging dolphins, the peasant watches the slow colouring of the tufts of moss and roots of herb, which, little by little, gather a feeble soil over the iron substance; then, supporting the narrow strip of clinging ground with a few stones, he subdues it to the spade, and in a year or two a little crest of corn is seen waving upon the rocky casque.”

Tyndall, speaking of the scene from the summit of the Little Scheideck, says: “The upper air exhibited a commotion which we did not experience; clouds were wildly driven against the flanks of the Eiger, the Jungfrau thundered behind, while in front of us a magnificent rainbow, fixing one of its arms in the valley of Grindelwald, and, throwing the other right over the crown of the Wetterhorn, clasped the mountain in its embrace. Through jagged apertures in the clouds floods of golden light were poured down the sides of the mountain. On the slopes were innumerable chalets, glistening in the sunbeams, herds browsing peacefully and shaking their mellow bells; while the blackness of the pine trees, crowded into woods, or scattered in pleasant clusters over alp and valley, contrasted forcibly with the lively green of the fields.”

Few men had more experience of mountains than Mr. Whymper, and from him, I will quote one remarkable passage describing the view from the summit of the Matterhorn just before the terrible catastrophe which overshadows the memory of his first ascent.

“The day was one of those superlatively calm and clear ones which usually precede bad weather. The atmosphere was perfectly still and free from all clouds or vapours. Mountains fifty, nay, a hundred miles off looked sharp and near. All their details ridge and crag, snow and glacier stood out with faultless definition. Pleasant thoughts of happy days in bygone years came up unbidden as we recognised the old familiar forms. All were revealed, not one of the principal peaks of the Alps was hidden. I see them clearly now, the great inner circle of giants, backed by the ranges, chains, and massifs…. Ten thousand feet beneath us were the green fields of Zermatt, dotted with chalets, from which blue smoke rose lazily. Eight thousand feet below, on the other side, were the pastures of Breuil. There were black and gloomy forests; bright and cheerful meadows, bounding waterfalls and tranquil lakes, fertile lands and savage wastes, sunny plains and frigid plateaux. There were the most rugged forms and the most graceful outlines, bold perpendicular cliffs and gentle undulating slopes; rocky mountains and snowy mountains, sombre and solemn, or glittering and white, with walls, turrets, pinnacles, pyramids, domes, cones, and spires! There was every combination that the world can give, and every contrast that the heart could desire.”

These were summer scenes, but the Autumn and Winter again have a grandeur and beauty of their own.

Autumn is dark on the mountains; grey mist rests on the hills. The whirlwind is heard on the heath. Dark rolls the river through the narrow plain. The leaves twirl round with the wind, and strew the grave of the dead.”

Even bad weather often but enhances the beauty and grandeur of mountains. When the lower parts are hidden, and the peaks stand out above the clouds, they look much loftier than if the whole mountain side is visible. The gloom lends a weirdness and mystery to the scene, while the flying clouds give it additional variety.

Rain, moreover, adds vividness to the colouring. The leaves and grass become a brighter green, “every sunburnt rock glows into an agate,” and when fine weather returns the new snow gives intense brilliance, and invests the woods especially with the beauty of Fairyland. How often in alpine districts does one long “for the wings of a dove,” more thoroughly to enjoy and more completely to explore, the mysteries and recesses of the mountains. The mind, however, can go, even if the body must remain behind.

Each hour of the day has a beauty of its own. The mornings and evenings again glow with different and even richer tints.

In mountain districts the cloud effects are brighter and more varied than in flatter regions. The morning and evening tints are seen to the greatest advantage, and clouds floating high in the heavens sometimes glitter with the most exquisite iridescent hues

that blush and glow
Like angels wings.

On low ground one may be in the clouds, but not above them. But as we look down from mountains and see the clouds floating far below us, we almost seem as if we were looking down on earth from one of the heavenly bodies.

Not even in the Alps is there anything more beautiful than the “after glow” which lights up the snow and ice with a rosy tint for some time after the sun has set. Long after the lower slopes are already in the shade, the summit of Mont Blanc for instance is transfigured by the light of the setting sun glowing on the snow. It seems almost like a light from another world, and vanishes as suddenly and mysteriously as it came.

As we look up from the valleys the mountain peaks seem like separate pinnacles projecting far above the general level. This, however, is a very erroneous impression, and when we examine the view from the top of any of the higher mountains, or even from one of very moderate elevation, if well placed, such say as the well-known Piz Languard, we see that in many cases they must have once formed a dome, or even a table land, out of which the valleys have been carved. Many mountain chains were originally at least twice as high as they are now, and the highest peaks are those which have suffered least from the wear and tear of time.

We used to speak of the everlasting hills, and are only beginning to realise the vast and many changes which our earth has undergone.

There rolls the deep where grew the tree.
O earth, what changes hast thou seen!
There where the long street roars, hath been
The stillness of the central sea.

The hills are shadows, and they flow
From form to form, and nothing stands;
They melt like mist, the solid lands,
Like clouds they shape themselves and go.


Geography moreover acquires a new interest when we once realise that mountains are no mere accidents, but that for every mountain chain, for every peak and valley, there is a cause and an explanation.

The origin of Mountains is a question of much interest. The building up of Volcanoes is even now going on before our eyes. Some others, the Dolomites for instance, have been regarded by Richthofen and other geologists as ancient coral islands. The long lines of escarpment which often stretch for miles across country, are now ascertained, mainly through the researches of Whitaker, to be due to the differential action of aerial causes. The general origin of mountain chains, however, was at first naturally enough attributed to direct upward pressure from below. To attribute them in any way to subsidence seems almost a paradox, and yet it appears to be now well established that the general cause is lateral compression, due to contraction of the underlying mass. The earth, we know, has been gradually cooling, and as it contracted in doing so, the strata of the crust would necessarily be thrown into folds. When an apple dries and shrivels in winter, the surface becomes covered with ridges. Or again, if we place some sheets of paper between two weights on a table, and then bring the weights nearer together, the paper will be crumpled up.

In the same way let us take a section of the earth’s surface AB, and suppose that, by the gradual cooling and consequent contraction of the mass, AB sinks to A’B’, then to A’’B’’, and finally to A’’’B’’’. Of course if the cooling of the surface and of the deeper portion were the same, then the strata between A and B would themselves contract, and might consequently still form a regular curve between A’’’ and B’’’. As a matter of fact, however, the strata at the surface of our globe have long since approached a constant temperature. Under these circumstances there would be no contraction of the strata between A and B corresponding to that of those in the interior, and consequently they could not lie flat between A’’’ and B’’’, but must be thrown into folds, commencing along any line of least resistance. Sometimes indeed the strata are completely inverted and in other cases they have been squeezed for miles out of their original position. This explanation was first, I believe, suggested by Steno. It has been recently developed by Ball and Suess, and especially by Heim. In this manner it is probable that most mountain chains originated.

The structure of mountain districts confirms this theoretical explanation. It is obvious of course that when strata are thrown into folds, they will, if strained too much, give way at the summit of the fold. Before doing so, however, they are stretched and consequently loosened, while on the other hand the strata at the bottom of the fold are compressed: the former, therefore, are rendered more susceptible of disintegration, the latter on the contrary acquire greater powers of resistance. Hence denudation will act with more effect on the upper than on the lower portion of the folds, and if continued long enough, so that, as shown in the above diagram, the dotted portion is removed, we find the original hill tops replaced by valleys, and the original valleys forming the hill tops. Every visitor to Switzerland must have noticed hills where the strata lie, and where it is obvious that strata corresponding to those in dots must have been originally present.

In the Jura, for instance, a glance at any good map of the district will show a succession of ridges running parallel to one another in a slightly curved line from S.W. to N.E. That these ridges are due to folds of the earth’s surface is clear from the following figure in Jaccard’s work on the Geology of the Jura, showing a section from Brenets due south to Neuchatel by Le Locle. These folds are comparatively slight and the hills of no great height. Further south, however, the strata are much more violently dislocated and compressed together. The Mont Saleve is the remnant of one of these ridges.

In the Alps the contortions are much greater than in the Jura, from the Spitzen across the Brunnialp, and the Maderanerthal. It is obvious that the valleys are due mainly to erosion, that the Maderaner valley has been cut out of the crystalline rocks s, and was once covered by the Jurassic strata j, which must have formerly passed in a great arch over what is now the valley.

However improbable it may seem that so great an amount of rock should have disappeared, evidence is conclusive. Ramsay has shown that in some parts of Wales not less than 29,000 feet have been removed, while there is strong reason for the belief that in Switzerland an amount has been carried away equal to the present height of the mountains; though of course it does not follow that the Alps were once twice as high as they are at present, because elevation and erosion must have gone on contemporaneously.

It has been calculated that the strata between Bale and the St. Gotthard have been compressed from 202 miles to 130 miles, the Ardennes from 50 to 25 miles, and the Appalachians from 153 miles to 65! Prof. Gumbel has recently expressed the opinion that the main force to which the elevation of the Alps was due acted along the main axis of elevation. Exactly the opposite inference would seem really to follow from the facts. If the centre of force were along the axis of elevation, the result would, as Suess and Heim have pointed out, be to extend, not to compress, the strata; and the folds would remain quite unaccounted for. The suggestion of compression is on the contrary consistent with the main features of Swiss geography. The principal axis follows a curved line from the Maritime Alps towards the north-east by Mont Blanc and Monte Rosa and St. Gotthard to the mountains overlooking the Engadine. The geological strata follow the same direction. North of a line running through Chambery, Yverdun, Neuchatel, Solothurn, and Olten to Waldshut on the Rhine are Jurassic strata; between that line and a second nearly parallel and running through Annecy, Vevey, Lucerne, Wesen, Appenzell, and Bregenz on the Lake of Constance, is the lowland occupied by later Tertiary strata; between this second line and another passing through Albertville, St. Maurice, Lenk, Meiringen, and Altdorf lies a more or less broken band of older Tertiary strata; south of which are a Cretaceous zone, one of Jurassic age, then a band of crystalline rocks, while the central core, so to say, of the Alps, as for instance at St. Gotthard, consists mainly of gneiss or granite. The sedimentary deposits reappear south of the Alps, and in the opinion of some high authorities, as, for instance, of Bonney and Heim, passed continuously over the intervening regions. The last great upheaval commenced after the Miocene period, and continued through the Pliocene. Miocene strata attain in the Righi a height of 6000 feet.

For neither the hills nor the mountains are everlasting, or of the same age.

The Welsh mountains are older than the Vosges, the Vosges than the Pyrenees, the Pyrenees than the Alps, and the Alps than the Andes, which indeed are still rising; so that if our English mountains are less imposing so far as mere height is concerned, they are most venerable from their great antiquity.

But though the existing Alps are in one sense, and speaking geologically, very recent, there is strong reason for believing that there was a chain of lofty mountains there long previously. “The first indication,” says Judd, “of the existence of a line of weakness in this portion of the earth’s crust is found towards the close of the Permian period, when a series of volcanic outbursts on the very grandest scale took place” along a line nearly following that of the present Alps, and led to the formation of a range of mountains, which, in his opinion, must have been at least 8000 to 9000 feet high. Ramsay and Bonney have also given strong reasons for believing that the present line of the Alps was, at a still earlier period, occupied by a range of mountains no less lofty than those of to-day. Thus then, though the present Alps are comparatively speaking so recent, there are good grounds for the belief that they were preceded by one or more earlier ranges, once as lofty as they are now, but which were more or less completely levelled by the action of air and water, just as is happening now to the present mountain ranges.

Movements of elevation and subsidence are still going on in various parts of the world. Scandinavia is rising in the north, and sinking at the south. South America is rising on the west and sinking in the east, rotating in fact on its axis, like some stupendous pendulum.

The crushing and folding of the strata to which mountain chains are due, and of which the Alps afford such marvellous illustrations, necessarily give rise to Earthquakes, and the slight shocks so frequent in parts of Switzerland appear to indicate that the forces which have raised the Alps are not yet entirely spent, and that slow subterranean movements are still in progress along the flanks of the mountains.

But if the mountain chains are due to compression, the present valleys are mainly the result of denudation. As soon as a mountain range is once raised, all nature seems to conspire against it. Sun and Frost, Heat and Cold, Air and Water, Ice and Snow, every plant, from the Lichen to the Oak, and every animal, from the Worm to Man himself, combine to attack it. Water, however, is the most powerful agent of all. The autumn rains saturate every pore and cranny; the water as it freezes cracks and splits the hardest rocks; while the spring sun melts the snow and swells the rivers, which in their turn carry off the debris to the plains.

Perhaps, however, it would after all be more correct to say that Nature, like some great artist, carves the shapeless block into form, and endows the rude mass with life and beauty.

“What more,” said Hutton long ago, “is required to explain the configuration of our mountains and valleys? Nothing but time. It is not any part of the process that will be disputed; but, after allowing all the parts, the whole will be denied; and for what? Only because we are not disposed to allow that quantity of time which the absolution of so much wasted mountain might require.”

The tops of the Swiss mountains stand, and since their elevation have probably always stood, above the range of ice, and hence their bold peaks. In Scotland, on the contrary, and still more in Norway, the sheet of ice which once, as is the case with Greenland now, spread over the whole country, has shorn off the summits and reduced them almost to gigantic bosses; while in Wales the same causes, together with the resistless action of time for, as already mentioned, the Welsh hills are far older than the mountains of Switzerland has ground down the once lofty summits and reduced them to mere stumps, such as, if the present forces are left to work out their results, the Swiss mountains will be thousands, or rather tens of thousands, of years hence.

The “snow line” in Switzerland is generally given as being between 8500 and 9000 feet. Above this level the snow or neve gradually accumulates until it forms “glaciers,” solid rivers of ice which descend more or less far down the valleys. No one who has not seen a glacier can possibly realise what they are like. Fi represents the

This entry was posted in Uncategorized. Bookmark the permalink. Trackbacks are closed, but you can post a comment.

Post a Comment

Your email is never published nor shared. Required fields are marked *

You may use these HTML tags and attributes <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>


  • Amazon: Buy our Kindle Books

  • Search Amazon

    Try Audible and Get Two Free Audiobooks

  • Brainy Fridays Recommends:

  • Search: